On the M-polynomial of planar chemical graphs
Authors
Abstract:
Let $G$ be a graph and let $m_{i,j}(G)$, $i,jge 1$, be the number of edges $uv$ of $G$ such that ${d_v(G), d_u(G)} = {i,j}$. The $M$-polynomial of $G$ is $M(G;x,y) = sum_{ile j} m_{i,j}(G)x^iy^j$. With $M(G;x,y)$ in hands, numerous degree-based topological indices of $G$ can be routinely computed. In this note a formula for the $M$-polynomial of planar (chemical) graphs which have only vertices of degrees $2$ and $3$ is given that involves only invariants related to the degree $2$ vertices and the number of faces. The approach is applied on several families of chemical graphs. In one of these families an error from the literature is corrected.
similar resources
ON THE EDGE COVER POLYNOMIAL OF CERTAIN GRAPHS
Let $G$ be a simple graph of order $n$ and size $m$.The edge covering of $G$ is a set of edges such that every vertex of $G$ is incident to at least one edge of the set. The edge cover polynomial of $G$ is the polynomial$E(G,x)=sum_{i=rho(G)}^{m} e(G,i) x^{i}$,where $e(G,i)$ is the number of edge coverings of $G$ of size $i$, and$rho(G)$ is the edge covering number of $G$. In this paper we stud...
full textThe Hyper-Wiener Polynomial of Graphs
The distance $d(u,v)$ between two vertices $u$ and $v$ of a graph $G$ is equal to the length of a shortest path that connects $u$ and $v$. Define $WW(G,x) = 1/2sum_{{ a,b } subseteq V(G)}x^{d(a,b) + d^2(a,b)}$, where $d(G)$ is the greatest distance between any two vertices. In this paper the hyper-Wiener polynomials of the Cartesian product, composition, join and disjunction of graphs are compu...
full textContractions of Planar Graphs in Polynomial Time
We prove that for every graph H, there exists a polynomial-time algorithm deciding if a planar graph can be contracted to H. We introduce contractions and topological minors of embedded (plane) graphs and show that a plane graph H is an embedded contraction of a plane graph G, if and only if, the dual of H is an embedded topological minor of the dual of G. We show how to reduce finding embedded...
full textThe Alexander Polynomial of Planar Even Valence Graphs
Abstract. We show how the Alexander/Conway link polynomial occurs in the context of planar even valence graphs, refining the notion of the number of their spanning trees. Then we apply knot theory to deduce several statements about this graph polynomial, in particular estimates for its coefficients and relations between congruences of the number of vertices and number of spanning trees of the g...
full textM-degrees of quadrangle-free planar graphs
The M-degree of an edge xy in a graph is the maximum of the degrees of x and y. The M-degree of a graph G is the minimum over M-degrees of its edges. In order to get upper bounds on the game chromatic number, He et al showed that every planar graph G without leaves and 4cycles has M-degree at most 8 and gave an example of such a graph with M-degree 3. This yields upper bounds on the game chroma...
full textextensions of some polynomial inequalities to the polar derivative
توسیع تعدادی از نامساوی های چند جمله ای در مشتق قطبی
15 صفحه اولMy Resources
Journal title
volume 11 issue 2
pages 65- 71
publication date 2020-07-30
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023